1. Reading modality: voice and eyes as source for cognitive processes

Reading processes have been studied in a psycholinguistic perspective and a lot is known about what is involved (Perfetti, 1999). Interrelated processes and behaviors in reading have been separately studied in silent reading and reading aloud. The data dependent on reading modality inform us in different ways about online linguistic processing, comprehension and fluency.

Reading aloud provides data from reading speech, where speed, hesitations and prosody constitute a rich source for inferring and interpreting ongoing linguistic integration. The required speech articulation creates a lag between visual input perception and its production (Benjamin & Schweinflug, 2010).

In silent reading, eyes can be a good window to capture cognitive processes. Fixations, progressives and regressive saccades, that is, the eye movements patterns can inform us about processing costs when dealing with materials with different lexical and linguistic properties (Rayner, John & Pollatsek, 2005).

What about combined reading data from voice and eyes? Will they be more informative when isolated?

Eye–voice span (EVS) is a construct that has been explored tentatively from Buswell to today (inhoff et al., 2011; Laubrich & Kliegl, 2016, a.o.). Its purpose is to grasp the dynamic cognitive labor involving linguistic representations, perceptual and cognitive processes required for comprehension when reading aloud. EVS measures the distance between eyes and voice, knowing that when the production of a given word begins, the eyes are ahead 2 to 3 words or around 500ms. The EVS amplitude is variable considering the reader experience and processing problems triggered for local linguistic properties of print input, such as lexical properties.

Our previous research on reading

Costa, Falé and Luegi are developing a set of experiments: on oral reading per se with speech analysis (Costa, 1992), on silent reading with eye-tracking (Luegi, 2006; Costa, Matos & Luegi, 2009); and more recently reading aloud with simultaneous register of speech and eye movements (Falé, Costa & Luegi, 2016). We aim to study the impact of lexical, syntactic and idiosyncratic properties in processing costs. Considering the data from speech reading and from eye-tracking, we found that eye movements are more sensitive to linguistic properties and text complexity than reading speech: sometimes the eyes respond to linguistic properties that voice apparently ignores.

Current research question:

To what extent can the lexical complexity affect the EVS?

Hypothesis

Considering that lexical properties, such as word length, syllable structure, word stress and frequency, impact on visual word recognition and lexical access, and assuming that EVS should be sensitive to lexical properties, we predict that:

- phonological complex words, as a result of number and syllable type and word stress, should have an effect on EVS, shortening it.
- less frequent phonological complex words should reduce more the EVS amplitude.

3. Experiment

Design and materials

Two tests, each with 30 target words, avoiding positions in the end of the line, punctuation marks, and contiguity between targets. The 60, with 3 or 4 syllables, were distributed over three levels of complexity (around 20 per level), taking into account:

- phonological properties, such as number and syllable type, and stress type, following the hierarchy based on syllable types frequencies in European Portuguese (Vigário & Falé, 1994; Vigário et al., 2006).
- CV in CV, CVn in CV, CV in CV

Target words, phonological complexity and frequency.

CV: CV in CV, CVn in CV, CV in CV. (up to nucleus with glide and vowel nasality features contribute to add more steps in the hierarchy)

- word frequency, according the Multifunctional Computational Lexicon of Contemporary Portuguese (EVS)

Participants

17 Portuguese adult native female speakers, university students, proficient readers.

Procedure

Participants read two texts and were asked to read aloud at their own pace, trying to understand. After reading each text, participants answered a multiple-choice questionnaire, thus ensuring a reading comprehension task.

Eye movements were recorded with a SMI VW 6X™ HI-SPEED system, at a 1250fps speed, and sound was recorded with a Logitech® Webcam Pro 9000.

Stimuli were divided, for presentation, into two blocks of text, font in size 22, Courier New, with two paragraphs spacing between rows, in a 27-inch screen.

Independent variables

- Phonological complexity at three levels: C1 ≤ C2 ≤ C3
- Phonological complexity plus frequency at three levels: C1 ≤ C2 ≤ C3

Dependent variables

Eye movement analysis

First fixation (FI) – first time a word is fixated regardless if it is fixated one or more times; reveals specific processes of visual word recognition (VWR).

First pass (FP) – all the time spent in the fixation of a word before moving the eyes to right or left regions; reveals aspects involved in VWR and lexical access.

Speech analysis

Word Production Duration (WPD) – the time spent on the production of a word; should reveal lexical access and any disturbance coming from word recognition, phonological mapping, lexical access and possible articulatory problems.

EVS: the time difference in milliseconds to articulation onset at the beginning of the first fixation on a word.

EVS_offset: the time difference in milliseconds to articulation onset at the end of the last fixation on a word.

4. Analysis and Results

4.1. First Fixation

First Fixation does not distinguish by complexity levels.

First Fixation does not discriminate between C1 and C2 (Est = 31.715; t = 1.714; p = 0.084*), and between C3 and C2 (Est = 60.392; SE = 16.815; t = 3.591; p = 0.001)

Complexity level on a word was previously assigned as a function of intrinsic phonological features and lexical information about frequency from a large corpus in EP. Physiological information coming from eyes and speech confirms partially linguistic categorization.

WPD mirrors the growing complexity from C1 to C3, with simpler words using significant less production time than more complex words. This is an expected result because C3 groups mostly long words and, particularly, with heavy syllables. It is worth saying that C2 and C3 also include short complex words (e.g., elipse/eleção/entro/strito/strittra/nção).

In what concerns the eyes, FI is insensitive to phonological and frequency properties, whereas FP works as a measure that distinguishes levels of complexity but only when frequency information is incorporated in the classification.

WPD and FP are good indicators to distinguish between our target words.

EVS considering phonological complexity and frequency.

Considering the results from eye movements and word production, statistical analysis was performed only on target words classified in 3 levels of complexity as a result of phonological and frequency properties.

- onset-EVS: EVS is higher in C1 than in C2
 (Est. = -0.095; SE = 24.020; t = -2.221; p = 0.034)
- There are no differences between C1 and C3
 (Est. = -0.867; SE = 23.524; t = 0.237; p = 0.802)

- onset_offset-EVS
 - EVS is higher in C1 than in C2
 (Est. = -78.584; SE = 27.482; t = -2.860; p = 0.004)
 - EVS is higher in C1 than in C3
 (Est. = -100.414; SE = 26.514; t = -3.731; p = 0.001).

5. Conclusions and next step

The temporal lag we obtained in onset-EVS can show the effect of some formal lexical properties: the eyes, in a first fixation, perceive quickly visual information that trigger nerve and cognitive processes in specific cortical visual areas, the mapping between letters and sounds, and the planning of the motor processes that lead to the articulatory word phonetic form.

The temporal lag obtained by onset_offset-EVS must integrate and be reactive to all the formal lexical information, including meaning and frequency of the word, and even in its relations with the mental model that is being built during reading. When the articulation begins, it is informed by all lexical properties of the previously fixated word.

Results show a quasi non effect of onset-EVS derived from complexity: simpler words allow a large EVS than C2, and not different from C3. Comparing C2 and C3, we can say that as the complexity increases, lag decreases. When the voice is informed by eyes over all the lexical information and if the word is complex, voice holds the eyes and does not let them move forward, otherwise the working memory goes into overload and there will be loss of crucial information for understanding. In turn, to wait for the voice, eyes do more fixations and retellations. To show the eyes, the voice commits disfluencies such as vowel lengthening [õõõõõõõ] or truncations [õõõõõõõõõõõõõõõõõõõõõõõ].

And here is our next step in research: deepen in how we know about cognitive processes in reading by the prosody and the dynamics of eye pattern.

References

Buswell, G. (1922). The psychology of reading, London: Macmillan